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ABSTRACT

The shape of the probability distribution of a set of high-resolution concentration fluctuation measure-

ments from an ion plume is studied using order statistics and certain selected quantiles derived from them.

A number of graphical techniques based on the order statistics are shown to be useful for the a,sessment

of the symmetry and tailweight of the underlying distribution of concentration. These graphical techniques

are applied, from both a descriptive and a computational point of view, to elucidate the underlying distribu-

tional shape of concentration and to assess the characterization efficacy of the probability distributions that

have been proposed as models for concentration fluctuations. In this respect, a new probability distribution,

namely, the g and h distribution, is introduced for describing concentration fluctuations and it is shown that

this distribution is superior to the more commonly used models, namely, the log-normal, the exponential,

and the clipped-normal distributions utilized by previous investigators. Except for the g and h distribution,

it is found that none of the commonly used models for the concentration probability distribution is able to

accurately characterize the extreme upper end of the concentration frequency distribution (i.e., the end of

the distribution that is critical for the prediction of the probability of exposure to peak levels). However,

the clipped-normal distribution is shown to provide a reasonably conservative model for the prediction of

the exceedances of critical concentration levels. Finally, it is noted that the g and h distribution yields a

bimodal form for the total probability density function for concentration whereas the clipped-normal distri-

bution provides a unimodal form. It is shown that the bimodal form of the total concentration probability

density function is consistent with both the data and certain theoretical results.
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INTRODUCTION

The dispersion of gaseous and particulate material released into the atmosphere is dependent on

the natural mixing processes associated with the entire spectrum of turbulent and eddying motions iii the

atmospheric boundary layer, ranging from the microscale (the smallest being the randovi motion of molecules

which cause molecular diffusion) up to the macroscale (e.g., arising from synoptic events and zonal currents).

The eddying motion of different scales produce fluctuations of the instantaneous concentration field around

the ensemble mean concentration of any contaminant injected into the turbulent flow. Consequently, the

instantaneous concentration field of any contaminant released into the atmosphere is inherently stochastic in

nature with the probabilistic and statistical characteristics of the field determined by the turbulent motions

of the boundary flow. Typically, the root-mean-square value of concentration fluctuations is at least as

large as the mean concentration and, hence, cannot be neglected in models of the turbulent dispersion

of contaminant material. The problem of the statistical characterization of concentration fluctuations is

of considerable interest and importance in a number of contexts including the evaluation of the screening

efficacy of battlefield obscurants released into the turbulent atmosphere, the prediction of the effects of

temperature fluctuations (which engender variations in the refractive index) on electromagnetic scattering

and their impact on the design of electro-optical sensors for detection and passive surveillance and imaging,

and the assessment of risk/hazard from the release of flammable, chemically reactive (e.g., fuel-air mixtures,

liquified natural gas spills, etc.) or toxic (e.g., various chemical and biological warfare agents) materials into

the atmosphere.

The statistical description of the characteristic fluctuations in concentration is conveniently embodied

in the probability density function (PDF) of concentration. Indeed, in order to study and model the fluc-

tuating concentration phenomena, it is necessary to know the probability density function or, equivalently,

all the higher-order moments of the random process. With regard to the probability density function of

the instantaneous concentration of a contaminant released into the atmosphere, relatively few studies have

been performed-rather, the vast majority of research on atmospheric dispersion has focussed on the de-

script ion of the characteristics of the ensemble mean concentration [1]. Chatwin [2] discusses the importance

of the probability density function of concentration with reference to the assessment of hazards posed by

the release of flammable and toxic gases; in particular, he emphasizes the need to characterize precisely the

upper end or tail of the probability density function in order to determine exceedances of critical levels by

peak concentrations. The shape and form of the probability density function of concentration fluctuations

of dispersing clouds and plumes of contaminant in the atmospheric boundary layer have been studied by

several investigators and a number of models have been proposed for the probability density function. Three

commonly used probability distributions for representing concentration fluctuations are the following: (i)

the log-i.)rmal distribution favored by Csanady [31 and used by Jones [4), (ii) the exponential distribution

advocated by Barry [5] and Hanna [6], and (iii) the clipped-normal distribution proposed by Lewellen and
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Sykes [7] through application of the principle of maximum entropy and adopted by Sawford [8], Ride [9] and

Dinar el. al [10] as the distribution that best represents the concentration fluctuation data.

It is important to note that all the preceding probability distributions for concentration in turbulent

dispersion only make use of the information embodied in the first- and second-order moments, namely, the

mean concentration and the root-mean-square fluctuation in concentration, and, as such, may not adequately

specify and characterize all the information embodied in the concentration fluctuations. The determination

of the correct shape of the PDF of concentration may require the investigation and incorporation of the

higher-order moments of the instantaneous concentration. Indeed, the higher-order moments embody the

information concerring the contributions from the tails of the PDF and, in particular, these statistical pa-

rameters provide indicators of the departure of the PDF of concentration from a Gaussian form. In this

context, it should be mentioned that Jones [4] and Sawford [8] have analyzed the skewness and the kur-

tosis measures which represent, respectively, the degree of asymmetry in the distribution and the relative

peakedness or flatness in the distribution. However, these investigators have used these measures primarily

as descriptive statistics and, as such, no attempts have been made to incorporate this information explic-

itly in models for the probability distribution of concentration. However, the probability distributions of

concentration in puffs and plumes diffusing in the atmospheric boundary layer are generally non-Gaussian,

undoubtedly the result of the complex nonlinear dynamical mechanisms responsible for turbulence which

foster nonlinear transformations of Gaussian processes. Consequently, from this perspective, the physical

nature of the stochastic processes responsible for turbulent concentration fluctuations can be only under-

stood if higher-order moments (even beyond the 4th order) are studied with the objective of analyzing the

departure of concentration statistics from Gaussian statistics.

The primary purpose of this paper is to characterize numerically the shape of the one-point probability

distribution of concentration for instantaneous plumes in the atmosphere. As previously mentioned, the in-

formation about the shape and form of the PDF (especially at the lower and upper ends of the distribution)

is contained in the higher-order moments of the concentration fluctuations (e.g., super- and hyper-skewness

and super- and hyper-kurtosis). However, it is important to remark that since these statistical parameters

depend on higher powers of the concentration data, they are generally difficult to estimate since the corre-

sponding sample moments are very sensitive to the presence of outliers in the data. These outliers, which are

simply anamolous points in the data sequence, can be due to brief instrumental malfunctions (e.g., a power

surge or flicker during a point's measurement) and/or to the presence of certain uncontrollable external

influences (e.g., the presence of a stray electrically charged aerosol particle). Furthermore, the outliers are

frequently difficult to identify and remove from a given data sequence. Consequently, since the higher-order

moments cannot be reliably estimated from the data, it is important to determine the accuracy of the sam-

ple moments and, to this purpose, it should be emphasized that the standard deviations in these estimates

depend critically on the shape of the underlying distribution of concentration and, in particular, on the tails
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of the distribution. However, the underlying distribution is unknown for concentration fluctuations since this

is the quantity that needs to be extracted from the data. In view of this, although the higher-order moments

provide the information on the detailed shape of thc PDF of concentration, they are not used in this study.

Rather, the statistical characterization of the concentration fluctuations are based on the sample quantil,.s

which can be robustly extracted from tire input concentration data. The data quantiles of concentration are

shown to provide a very convenient, robust and effective method for studying the statistical characteristics

of concentration fluctuations and for extracting the shape of the PDF of concentration. Towards this goal,

a new model distribution for concentration, namely, the g and h distribution, is introduced and tire abil-

ity of this distribution to characterize the concentration statistics will be compared with three commonly

used model distributions for concentration, namely, the log-normal, the exponential, and the clipped-normal

distributions.

DATA DESCRIPTION AND PREPROCESSING

Digital records of concentration fluctu tions in ion plumes were supplied to the author by Dr. D. J. Hide.

Details of the field experinent from which the concentration data were derived have been described by Ride

[9]. The dispersion experiment lasted about 16 minutes and was carried out at Cardington, Bedfordshire,

England over flat and unobstructed terrain on 9 July 1985 between 14:00 and 14:30 hours under near neutral

stability conditions. The basic data consist of measurements of fluctuations in concentration of a plume

of negatively ionized air produced continuously by a relatively powerful ion generator positioned at 1.5 in

height. The arrangement of apparatus for the experiment is shown in Figure 1. The concentrations in the

ionized plume were measured by four ion collectors placed at a height of 1.5 m and at a distance of 16 in

dovnwind of the ion source. The four ion collectors were positioned in the crosswind direction; collector

Nos. 3 and 4 were placed 0.5 m laterally on either side of the line of sight extending from the ion generator

along the average wind direction and collector Nos. I and 2 were positioned, respectively, at lateral distances

of 2.5 and 1.5 m from the line of sight. Consequently, collector Nos. 3 and 4 were positioned approximately

at the mean centerhine of the ion phne. Ion collector No. 3 malfunctioned and the spurious data obtained

from this sensor have riot be used in the following analysis. The concentration data were sampled at a rate

of 1000 Hz with an analog-to-digital converter with a resolution of 8 bits.

The digital time sequences from collector Nos. 1, 2 and 4 were visually examined and a section

consisting of 5 minutes of relatively "clean" concentration data was selected from each sequence for further

processing. lowever, prior to performing the data analysis, some preprocessing of the three data series was

necessary. Firstly, the presence of artifacts in the form of narrow spikes of duration 0.001 s or less (essentially

single isolated points in the data series which had relatively large values), due probably to the presence of

stray electrically charged aerosol particles in the vicinity of the ion collectors, were visually identified and

removed from the data sequence. Secondly, small baseline drifts in the data sequences were corrected by
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subtracting a pre-selected threshold value from each datum and clipping any negative values to zero. No

further filtering was performed on the resulting data sequences and, for the purposes of this study, these

preprocessed sequences are considered to consist of ideal, non-time averaged cnncentration data.

An example of concentration fluctuations in an ion plume is given in Figure 2 which displays 1.5 s (i.e.,

1500 data points) of concentration data from collector No. 4 which was positioned approximately at the

mean plume centerline. It is clearly seen that the variability in concentration consists of a series of bursts

of high concentration interspersed with periods of zero concentration. Note the large spatial gradients ill

concentration at the leading and trailing edges of the pulses. The intervals of zero concentration illustrate

the phenomenon of plume meandering whereby turbulent eddies much larger than the plume move it bodily

back and forth over the sampling point resulting in periods when the tracer material is completely absent

from the airflow over the sampler. However, eddies comparable in size to the plume redistribute tracer

material locally within the plume. An example of in-plume fluctuations is shown in Figure 3 from which

it iq readily seen that there is considerable small-scale structure in the variation. Observe that even within

the instantaneous plume, there is the succession of large concentration or clusters of large concentration

separated by sequences of small concentration, the latter consisting of regions of relatively clean air.

A n,:mber of standard descriptive statistics were computed for the three data sequences and presented

in Table I. These statistics are presented as a function of y/ory, where y is the lateral distance from the

mean plume centerline and ay is the width of the plume; the latter parameter was determined by fitting

a Gaussian curve to the mean crosswind concentration profile. Since the data were supplied in terms of

digitized voltage levels and since the calibration factors required to convert the voltages to absolute ion

conceitration levels were not made available to the author, the concentration statistics given in Table I are

for data that have been scaled by their respective mean concentration values, The descriptive statistics

that have been calculated for the data include the absolute deviation-to mean, the standard deviation-to-

mean, the mode-to-mean, the median-to-mean, and the peak-to-mean concentration ratios, as well as the

skewness, the kurtosis, and the intermittency -y which is defined as the fraction of the total time that zero

concentrations are observed. It should be noted that the kurtosis values used in this paper have had the

value 3 subtracted from them-viz., for this "normalized" kurtosis, a value of zero is obtained for a Gaussian

distribution. An examination of Table I shows that the concentration data exhibit marked deviations from

a Gaussian distribution. In particular, the skewness indicates that the data is strongly skewed to the right

and the kurtosis is much larger than in a Gaussian distribution indicating a very peaked (i.e., leptokurtic)

distribution. The latter is undoubtedly due to the high intermittency. Along these lines, observe that the

niode-to-mean ratio is zero implying that zero concentration is the most frequently occuring value in the

data sequence. Furthermore, note that the median-to-mean ratio is zero for all data sequences, indicating

that the intermittency is greater than 0.50 for all sequences.

The information on the zero concentration is embodied in the intermittency -y and once this paramter
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is known, the intervals of zero concentration represent superfluous information. Consequently, it is conve-

nient to remove the intervals of zero concentration from the unnormalized data sequences and consider the

conditional concentration statistics. The latter statistics are presented in Table II. Again, it should be noted

that these statistics are calculated for normalized data but, in this case, the data are scaled by the associated

conditional means. Observe that the skewness and kurtosis for the conditional concentration data are smaller

than the corresponding values for the unconditional concentration data implying that the probability dis-

tribution of the conditional data exhibit a smaller departure from a Gaussian distribution. In addition, the

variation in the conditional statistics with respect to lateral position y/o, is considerably smaller than that

in the unconditional statistics. In other words, the statistics of the conditional concentration data scaled by

the conditional mean are less sensitive to y/f, than the statistics of unconditional concentration data scaled

by the unconditional mean. This indicates that the conditional mean constitutes a convenient concentration

scale for the conditional data (at least in homogeneous turbulence under neutral atmospheric stability), an

observation that is supported by the work of Lewellen and Sykes [7], Sawford [8] and Dinar et. at. [10].

Consequently, the following analysis will focus primarily on the normalized conditional concentration data.

SOME EXPLORATORY DATA ANALYSIS

This section focusses on the application of ordered statistics and quantiles to the characterization

of the shape of the probability distribution for conditional concentration data. This approach permits a

visualization of the distributional shape of the data without the need to consider higher-order moments. As

stated previously, moment-basd methods for the characterization of distribution shape tend at best to be

misleading and, at worst, to be unreliable since these methods are not very robust.

Given the instantaneous conditional concentration data sequence, denoted by c), c 2 , c 3 ,. .. ,c,, define

a corresponding sequence cOl), c( 2 ), c(3), ... , c() of the original sequence values permuted to be in ascending

numerical order, viL. C(1) C(2) S L(3) 5 . ... K c(,,. These values are rfferred to as the order statistics

of Chc 2 , ca,.... , c,,. Assume that the conditional concentration data samples are drawn from an underlying

population with conditional probability distribution function F+(c). If p denotes a positive proper fraction,

then the quantile of order p (or, equivalently, the p percentile), which will be designated by Cp, is defined as

the unique solution of the equation F+(C(p) - Pr(c < Cp) = p. Here, Pr denntes "the proahbility that". The

value of p is referred to as the percentage point. As an example, the quantile of order 1/2 (or, synonymously,

the 1/2 percentile) is the median of the distribution with Pr(c < Co s) = F+(Cos) = 1/2. The quantile

function Q(p) (p E [0, 1]) corresponding to the distribution function F+(c) can be now defined as follows:

Q(p) = (F+) '(p) inf{c : F+ (c) > p),

where inf denotes infimum. Note that for a fixed value of p, Q(p) = Cp. In view of this definition, the

quantile function can be estimated from the ordered statistics according to the prescription

Q(p)=c() for < -, j= 1,2,3,...,n,
nn
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where Lccent (.) denotes the estimate of (.).

A typical example of the sample quantile function for concentration is shown in Figure 4: the sample

quantiles for this figure are constructed from the unconditional normalized conceritr,,tion data from collector

No. 4 (y/oy = 0.715). The most distinctive feature of this plot is the long plateau at zero concent ration. This

long horizontal segment in the sample quantile function suggests the presence of a discrete probability mass

at zero concentration. The kink in the quantile function occuring at approximately p = 0.84 terminates (li,

plateau region and delineates the beginning of the sharp rise in the quantile function. The location of the kink

at p = 0.84 coincides numerically with the intermittency - observed at the sampling point (cf. Trable 1). The

sharp rise in the function after the kink (i.e., "infinite" sloc) implies the presence of a zero in the prbability

density function. Since the probability density function is necessarily non-negative, this suggests that the

unconditional concentration data is bimodal. This should not be too surprising since the concentration

fluctuations originate from two distinct mechanisms: namely, the plume meandering which gives rise to the

intermittency and the within-plume concentration fluctuations. Each of these distinctive mechanisms can be

associated with a particular portion of the sample quantile function- the plume internuittency with the long

plateau and the within-plume fluctuations with the sharp rise. Thus, tht. dual structure in the concentration

fluctuations is clearly revealed in the sample quantile function.

The sample quantile function for the conditional normalized concentration data obtained from collector

No. 4 is displayed in Figure 5. Superimposed on the sample quantile function are two boxes whose widths

are equal to the mid-spreads of the lower and upper 1/4 percentiles (i.e., Q(0.25) and (Q(0.7:1)) and the 1/8

percentiles (i.e., Q(0.125) and Q(0.875)). The mid-spread is defined as the upper percentile value minus the

corresponding lower percentile value. The solid horizontal line ruled inside the smaller box delineates the 1/2

percentile or median for the data. The display in Figure 5 is a quantile box plot for the concentration data

The box plot was first applied to statistical data analysis by Tukey [11]. Observe that the sample quantile

function for the conditional concentration data is smooth and does not exhibit the long horizontal plateau

ti,,tt was so di-tinctive in the quantile function for the unconditional concentration data (cf. Figure 4). The

shape of the sample quantile function for the conditional concentration data is quite symmetrical within the

two quantile boxes (cf. Figure 5). However, outside these two quantile boxes, the asymmetry in the data

is readily evident. Indeed, note that the da,, which comprise the right tail increase more rapidly than the

data which comprise the left tail, viz. the right, tail is longer than the left. The latter fact, in itself, should

not be too surprising since the concentration cannot take on negative values.

The detnsity-quantile function fQ(p) defined as

fQ(p) - p+(c = Qp),

where p+(c) denotes the probability density function for the conditional concentration data, can be estimated
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from the sample quantile function as follows:

fQ(kA) = - 1aQC(( + I)A) - ((k - I)A)'

where A is 4 -astant step-size and the density-quantile function is evaluated at a sequence of equi-s)aced

percentage points denoted p = A,2A,3A,.. ., 1 - 2A, 1 - A. Note that the density-quantile function is

smply the probability density function evaluated at the quantiles. Figure 6 shows the sample density-quantile

function for the normalized conditional concentration data from collector No. 4. This plot was constructed by

estimating points on the density-quantile function using Equation (1) and the results contained in Figure 5.

The sample density-quantile in Figure 6 was plotted by interpolating between the estimated points using a

cubic spline interpolation routine. Observe that the density-quantile function is unimodal; the maximum

value of the density-quantile function occurs at approximately c/C = 0.06 which is in accordance with the

mode-to-mean ratio of 0.058 calculated earlier (cf. Table 11). Furthermore, the mode of the density-quantile

function is very sharp and narrow. The data is clearly skewed to the right and, as has been observed earlier

in conjunction with the quantile function, the right tail of the distribution is somewhat longer than the left

tail.

To investigate further the shape of the distribution of concentration, certain selected quantiles were

extracted from the ordered statistics. The selected quantiles consisted of the 1/2 percentile (p = 0.5), the

lower and upper 1/4 percentiles (p = 0.25 and p = 0.75), the lower and upper 1/8 percentiles (p = 0.125

and p = 0.875), the lower and upper 1/16 percentiles (p = 0.0625 and p = 0.9375) and, so forth, continuing

outward into the tails by successively halving the tail area on each end. The following quantitative diagnostic

measures were computed from these selected quantiles: the mid-summaries p(p) defined as

/'(P) = (Q(l - P) + Q(P)), < P __ 0.5;

the mid-spreads defined as

6(p) = Q( - p)-Q(p), 0 < p < 0.5;

and the psetidosigmas defined as

(7(p) =(p)/(Z-P - ZP),

whetre Zp denotes the p-th order quantile of the standard Gaussian distribution (i.e., a Gaussian distribution

with mean zero and unit standard deviation). It should be noted that ((p) can be interpreted as the ratio

of the mid-spread for the data to the corresponding mid-spread for the standard Gaussian distribution and,

as such, is a measure of the elongation of the tails of the data when compared to the Gaussian standaid.

Taken together, the mid-summaries and pseudosigmas are useful measures for describing two important

characteristics of the distribution shape of the data: namely, skewness (departure from symmetry) and

elongation (weight in the tails).
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Figure 7 shows the selected mid-summaries p(p) for the normalized conditional concentration data

from collector No. 4 plotted against the square of the corresponding standard Gaussian quantile z. If the

underlying distribution for the concentration data is symmetric, then the upper and lower p-th order quantiles

should be symmetrically located with respect to the median. Consequently, for a symmetric distribution,

the mid-summaries jtp) for each value of p should equal a constant, that constant being the median. Hence,

in view of this, if the concentration data were perfectly symmetric, the mid-summaries versus z2 plot (or

mid-versus-z 2 plot for short) displayed in Figure 7 would be a horizontal line. However, an examination of

Figure 7 shows that the mid-versus-z 2 plot of the concentration data increases as one moves farther into the

tails implying that the data are skewed to the right. Furthermore, note that points on the mid-versus- z2

plot seem to determine two straight-line segments-the first seven points (embodying information up to the

lower and upper 1/128 percentiles) fall oi 't line of large positive slope (indicating a substantial skewness to

the right) and the last six points (embodying information from the lower and upper 1/128 percentiles to the

lower and ulpper 1/8192 percentiles) fall on a line of small positive slope (indicating only a slight skewness to

the right). Hence, concentration data associated with the extreme lower and upper tails of the distribution

exhibit only a minor departure from symmetry. The latter is probably due to the fact that concentration is

bounded below by zero (negative conccntratio,,b cannot occur) and above by the initial source concentration

(maximum concentration corresponding to undiluted material). Consequently, the mid-versus-z 2 plot (cf.

FIgure' 7) shows that the skewness in the concentration data is confined primarily to the near tails of the

distribution.

Figure 8 displays a plot of the selected pseudosigmas a(p) versus z2 for the normalized conditional-p

concentration data from collector No. 4. This plot can be used to examine the tailweight of the distribution

of concentration. A horizontal line on the pseudosigma-versus-z- plot would indicate that the data are

neutrally elongated in comparison to the standard Gaussian distribution. A perusal of Figure 8 shows that

or(p) decreases systema1tically implying that the distribution for concentration is less elongated (i.e., has a

lighter or shorter tail) than the standard Gaussian distribution.

Unlike skewness, elongation can be characterized by studying the upper and lower halves of the data

separately; indeed, it is not necessary that the behavior of the lower tail of a distribution be identical to

that of the upper tail (11]. To this end, consider a pushback analysis whereby the following "flattened" data

quantile values (i.e. pushback values) fp are computed:

fp = Q(p) - s,, 0 _p< .

whlir, Q(p) is the p-th order data quanti o, zP is the p-th order standard Gaussian quantile and s is a scale

for the data which is estiinated using

s =medQo - p) - Qp)Z 1 . 1, - Zr)11 0 p 0.5.
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Here, med denotes median. Observe that s is simply the median of the pseudosigmas ci(p) of the data. Now,

it should be noted that a plot of fp versus zp will yield a horizontal line if the concentration data is Gaussian

with scale s. Furthermore, if the concentration data is Gaussian with a scale different than s, then thw fj,

versus zp plot will result in a straight line with non-zero slope. The slope of this line is directly related to

the scale of the Gaussian.

Figure 9 shows the pushback normalized conditional concentration values (collector No. 4) for selected

p-th order quantiles plotted as a function of zP. The scale s = 0.74 for the concentration data was obtained

by selecting the median of the pseudosigma values displayed in Figure 8. A careful examination of Figure 9

indicates that the points fall on three distinct straight-line segments. The first (i.e., leftmost) twelve points

determine a line with slope 0.79 and correspond to the information in the lower tail (i.e., below the median)

of the distribution. The next seven points (which includes the median point) fall on a line with slope 0.47 and

determine the information in the near upper tail of the distribution. The last (i.e., rightmost) six points are

shifted downwards and define a line with slope -0.31; these points embody the information in the extreme

upper tail of the distribution. Consequently, the distribution of concentration can be characterized by three

Gaussians with different scales (as evidenced by the three straight lines of different slopes in Figure 9).

From the slopes of these lines, it can be determined that the data in the lower tail is Gaussian with a

scale (in c/C units) that is approximately (s + 0.79)/(s + 0.47) = 1.26 times the scale of the near upper

tail; similarly, the data in the extreme upper tail is Gaussian with a scale (in c/C units) that is about

(s - 0.31)/(s + 0.47) = 0.355 times the scale of the near upper tail. Since the scale in the lower tail is

only 26 percent larger than that in the near upper tail, it follows that the concentration distribution can

be well approximated up to about the 127/128 percentile with a single truncated Gaussian distribution.

However, this single Gaussian approximation will not be able to properly characterize the extreme upper

tail of the concentration distribution. Finally, it is useful to point out that the behavior of the upper tail of

the concentration distribution as displayed in Figure 9 is consistent with the information concerning the tail

as displayed in Figure 7. In particular, note that the breakpoint that separates the near upper tail from the

extreme upper tail occurs at the same point in both figures.

MODELLING CONCENTRATION DISTRIBUTIONS

It is known that the dependence of the conditional probability distribution on the crosswind distance

from the mean "1lume cmnterline can be removed by scaling the conditional concentration data c by the con-

ditional ne,,; (Lewellen and Sykes [71; Sawford [8]; Dinar et. al. [10J). Figure 10 displays the conditional

probability _,..butions of the normalized concentration data obtained from the three ion collectors. This

figure shows th- three probability distributions virtually coincide. However, this coincidence is some-

what mist 'auing since the plot of Figure 10 is more sensitive to differences in the probability distributions

in the center or middle of the distributions than in the tails. Consequently, to study the differences in the
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probability distributions in the tails, it is necessary to use another form of display. To this purpose, consider

a quantile-quantile (Q-Q) plot which is simply a plot of the quantiles of one distribution against those of

another. Since the quantile is a rapidly varying function of the percentage point p where the density is sparse,

the Q-Q plot is particularly effective in delineating the differences in the tails of two distributions. Figure 11

exhibits the Q-Q plot of the sample quantiles for the normalized conditional concentration data from collec-

tor Nos. I (y/ay = 3.575) and 2 (y/0, = 2.145) against those from collector No. 4 (y/ay = 0.715). This

figure clearly shows that probability distributions for c/C are not completely independent of y/uy; indeed,

the variation of the behavior of these probability distributions with crosswind distance becomes more acute

at the extreme upper tails.

The two basic mechanisms responsible for concentration fluctuations, namely, plume meandering re-

sulting in the intermittent periods of zero concentration and in-plume mixing and interleaving of contaminant

and clean air resulting in fine-scale internal variations, are mutually exclusive, so, the probability distribution

of concentration at a fixed receptor point can be written as

F(c) = yF-(c) + (1 - y)F+(c)

= 711l(c) + (1 - y)F(c). (2)

Ilere F(c), F-(c) and F+(c) are, respectively, the probability distribution for the total concentration c,

for the gaps of zero concentration, and for the in-plume concentration fluctuations. Since there is a finite

probability for observing periods of zero concentration, the probability distribution F-(c) in Equation (2)

is expressed as a unit step function H(c) with a step at c = 0 of magnitude -. It, view of Equation (2), the

probability density function can be represented here by

dF(c)p~)-dc - 7p-(c) + (1 - "y)p+(c)

= 76(c) + (1 - 7)p+(c), (3)

where p(c) is the total PDF of concentration, p-(c) is the PDF for zero concentration, and p+(c) is the PDF

for in-plume fluctuations (viz., the conditional PDF for concentration fluctuations with the intervals of zero

concentration censored). Observe that p-(c) = 6(c), the Dirac delta function, which results from the step

discontinuity (i.e. H(c)) in F(c).

A number of models have been proposed for the conditional probability distribution, the most impor-

tant of which are the log-normal ([3], [4]), the exponential ([5], [6]) and the clipped-normal ([7], [8), [9], and

[10]) distributions. In addition to these common distributions, this paper focusses on the g and h distribu-

tion. The g and h family of distributions, obtained by a nonlinear transformation of a standard Gaussian

process, is extremely flexible in characterizing a great variety of distribution shapes [12,13]. The probability

distribution F+(c) or, equivalently, the probability density function p+(c), follows the g and h distribution
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if the random variable c is obtained by transforming the standard normal variable z according to

C = M+S exp(gz) - 1 exp hz 2 /2), (4)
9

where g and h are functions of z 2 and rn and s are location and scale parameters for c. In this context,

it should be noted that m is the median of c. The function g controls the asymmetry or skewness of the

distribution and, for the purposes of the present paper, g will be taken to be the following simple polynomial

in z2:
g = go + giz2 , (5)

where go and g, are constants. The function h controls the amount of elongation or the amount of tail-

stretching in the distribution. In the present paper, the function h will be chosen as the following simple

polynomial in z 2 :

h = ho + hz 2 , (6)

where h0 and h, are constants. Other more general forms for g and h as functions of z 2 are possible and

a discussion on the latter point can be found in Tukey [12] and Hoaglin and Peters [13]. Note that when

ho= 0, hi = 0 and g, = 0, the g and h distribution reduces to the three-parameter log-normal distribution

provided go is positive, the latter constraint ensuring the positive skewness (i.e., skewness to the right) of

the distribution.

The four probability distribution models were fitted to the conditional concentration (i.e., c/C) data

for collector No. 4 (y/lov = 0.715). The parameters of the log-normal, the exponential, and the clipped-

normal distributions were obtained from the first- and/or second-order moments of the concentration data.

The parameters of the g and h distribution were computed by matching a number of theoretical quantiles for

the distribution with the corresponding sample quantiles extracted from the data as described by Hoaglin

and Peters [13]. The results of this analysis are summarized in Table III. The parameters displayed in this

table include Z (i.e. C), the mean of the exponential distribution; p. and a., the logarithmic mean and

standard deviation of the log-normal distribution; and u, and o,, the clipped mean and standard deviation

of the clipped-normal distribution. Table IV compares selected quantiles of the fitted distributions with

the sample quantiles computed from the data. Observe that the g and h distribution provide an accurate

characterization of the data quantiles with a relative error of less than 2 percent.

The results of Table IV can be graphically displayed in the form of Q-Q plots of the data quantiles

versus the fitted quantiles of the model distributions. On such a plot, it should be noted that an exact

fit between the concentration distribution and the model distribution results in a straight line which has

slope I and intercept 0 when the ordinate (data quantiles) and abscissa (fitted quantiles) have equal srales.

Figure 12 illustrates the Q-Q plot for the concentration data and the fitted log-normal distribution. The

extreme curvature of the Q-Q plot in Figure 12 implies that the log-normal distribution is a poor fit to
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the concentration data; indeed, the log-normal distribution grossly overestimates the data quantiles in the

extreme upper tails. Consequently, while the data exhibits periods of high concentration, the fraction of

extreme values at these high concentrations is not so large as to support the application of a log-normal

distribution. Figure 13 shows the Q-Q plot of the concentration data quantiles with the fitted exponential,

clipped-normal and g and h distributions chosen as the reference distributions. An examination of Figure 13

shows that the g and h distribution is superior to both the exponential and clipped-normal distributions in

modelling the concentration statistics. Indeed, the linearity of the Q-Q plot configuration for the sample

quantiles versus those for the g and h distribution provides the evidence that this distribution is a good

probability model for the concentration data. Along these lines, it should be noted that a least squares fit

of the points gives a slope of 1.007 ± 0.006 and an intercept -0.013 ± 0.019 with a correlation coefficient

r between the data and fitted quantiles of 0.999. The concave r-shaped curves of the Q-Q plots of the

data quantiles versus the quantiles from the exponential and clipped-normal distributions show that these

model distributions have longer or heavier tails than the actual underlying distribution of the concentration

data. However, the clipped-normal distribution provides a better approximation for the data than the

exponential distribution. Observe that the clipped-normal distribution provides a reasonable description for

the concentration data in the lower and near upper tails. This fact has already been indicated with regard

to the pushback analysis performed earlier and summarized in Figure 9. Furthermore, in adherence with

Figure 9, the clipped-normal distribution does not provide an accurate description of the concentration data

in the extreme upper tail. However, it should be remarked that the clipped-normal distribution does provide

a reasonably accurate and relatively conservative model for the concentration data (i.e., it overpredicts

the concentration in the extreme upper tail). As an example, it overpredicts the 0.996 percentile of the

concentration by about 15 percent, although the overprediction becomes progressively worse as one proceeds

outward into the extreme upper tail.

Figures 14, 15 and 16 show the unconditional frequency distribution data superimposed on the total

model probability distribution obtained from Equation (2) using the observed intermittency y and the fitted

conditional clipped-normal and g and h distributions at, respectively, y/ory = 0.715, 2.145, and 3.575.

Both the clipped-normal and g and h distributions provide good approximations for the concentration data,

although the g and h distribution is clearly seen to model to data more accurately in the upper tail. Again,

it is important to note that the plots in these figures tend to emphasize the appearance of differences in

the centers of the distributions. Consequently, these plots are somewhat misleading in that they seem to

indicate that both the clipped-normal and g and h distributions provide equally good approximations for

the data at the upper tails. However, a perusal of the Q-Q plot of Figure 13 clearly shows that this is not so.

Indeed, Figure 13 illustrates that the theoretical quantiles of the clipped-normal distribution bends toward

the horizontal at the upper end suggesting that the concentration data is negatively elongated relative to

the clipped-normal. In other words, the curve flattens away from the ideal straight line at the upper end
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implying that the concentration data quantiles are less extreme than those predicted by the clipped-normal

distribution.

Figures 17 and 18 show the conditional model probability density functions (clipped-normal and g and

h distribution) obtained from fitting the scaled concentration data at approximately the plunie centerline

(//0Y = 0.715) and the plume edge (y/oa, = 3.575). The clipped-normal PDF is remarkably similiar in form

to the g and h PDF with the exception of the presence of a single sharp maximum or peak in the latter that is

absent in the former. The clipped-normal PDF for the conditional normalized concentration data attains its

maximum at c/C = 0. On the other hand, the g and h PDF has a maximum at approximately c/C = 0.60

for y/ 6 -= 0.715 and at c/C = 0.12 for y/ay = 3.575. The maximum attained by the g and h PDFs at the

plume centerline and edge agree well with the ratio of the mode-to-mean values of 0.058 and 0.115 obtained

from the computation of the descriptive conditional concentration statistics (cf. Table I1) (lh,erve that the

shape of the conditional PDF of concentration at y/a = 0.715 is similar to that at y/ffy = 3.575, suggesting

that the fine-scale structures of the fluctuations across the plume are reasonably self-similar. Furthermore,

the shape of the conditional PDF given by the g and h distribution is in agreement with the shape of the

empirical density-quantile function illustrated in Figure 6 which clearly shows the existence of a sharp and

narrow peak at c/C $ 0; in this respect, the clipped-normal distribution is not consistent with shape of the

empirical density-quantile function.

When the conditional clipped-normal and g and h PDFs are inserted into Equation (3), it is clear that

the resulting total PDF p(c) is unimodal for the clipped-normal distribution model and bimodal for the g and

h distribution model. It is important to state that the bimodal model for p(c) is consistent with the empirical

quantile function depicted in Figure 3. In this regard, the unimodal model for p(c) does not account for

the sharp rise in the graph of the sample quantile function shown in Figure 3. Furthermore, the bimodal

form of the total PDF p(c), predicted by the g and h distribution, agrees with the bimodality of the PDF as

predicted by the physically motivated strand model developed by Chatwin and Sullivan [14] in the context

of clouds. However, this model can be extended to the case of plumes by simple analogy and reinterpretation

of certain results. In this model, the contaminant material injected into a turbulent, flow field is visualized

to be drawn out into a complex entanglement of highly distorted sheets and strands which are extended

in one direction and compressed in another. The thinning of these contorted sheets and strands result

in sharply varying values of concentration in the contaminant cloud-the sharp gradients in concentration

serve to enhance the effects of molecular diffusion and this process continues until the sheets and strands

have a minimum thickness comparable to the conduction cut-off length, at which point the thinning due to

stretching is balanced by the smearing and smoothing out of the sharp interfaces between the filaments and

the uncontaminated fluid due to molecular diffusion. Chatwin and Sullivan [14] use similarity arguments

to show that sampling such a cloud with a probe of volume a3 results in a bimodal PDF-the first mode

at c = 0 corresponds to the sampling of uncontaminated fluid and the second mode at c = c(a) delineates
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the sampling of contaminant material within the strands. The PDF p(c) is shown essentially to decrease

monotonically as c -- c(O) (c > c(a)) where c(O) is the (maximum) concentration at the strand centerline.

In this regard, it should be noted that the shape of the PDF predicted by the strand model is consistent

with the shape of the concentration PDF modelled by the g and h distribution (cf. Figures 17 and 18 which

corresponds to the "toe" of the total PDF p(c) where c > c(a)).

SUMMARY AND CONCLUSIONS

In this paper, the shape of the probability distribution of concentration fluctuations is studied empir-

ically using high resolution ion plume dispersion data. To characterize the physical nature of the processes

responsible for these fluctuations, it is necessary and significant to measure or calculate higher-order moments

of the process since these moments embody the information from the tails of the probability distribution.

However, it is difficult to estimate these moments reliably from concentration fluctuation data since they are

strongly affected by outliers in the data. This realization, coupled with the fact that the precise shape of the

probability distribution in the tails seem to require knowledge of the higher-order moments with inordinately

high degrees of precision, has resulted in the consideration, instead, of the order statistics as a vehicle for

the useful description and characterization of the distribution shape. Unlike the higher-order moments, the

order statistics for the concentration data can be determined robustly from even a moderately-size batch of

data. In this regard, it is shown that the order statistics and the selection of various quantiles from these

statistics form the basis for a range of useful graphical methods for the exploratory and confirmatory data

analysis aimed toward the study of the distributional shape of concentration data and the distributional

relationships between the data and the model (theoretical) frequency distributions used to describe them.

Indeed, the order statistics of the concentration data provide an exhaustive representation of the data that

not only lends itself to graphical representation and visualization, but also provides a robust characteriza-

tion of location, scale, and shape of the data. In this respect, the order statistics provide a valuable tool for

studying concentration fluctuation data with the viewpoint of assessing the symmetry and tailweight in the

data and for revealing peculiarities in the data.

The data analysis techniques based on ordered statistics have been applied to some high resolution

(up to 1000 llz bandwidth) concentration fluctuation measurements obtained with an ion tracer. A sample

quantile function constructed from the concentration data clearly shows the bimodality of the underlying

probability distribution for the process. The probability distribution of the conditional normalized con-

centration data (i.e., data with the zero concentration censored and scaled by the conditional mean) is

relatively insensitive to the lateral location in the plume. However, this invariance of distribution shape with

lateral position applies primarily to the center and shoulders of the distribution. Indeed, a Q-Q plot of the

conditional concentration data quantiles at one lateral position versus those at another clearly reveals the

deviations in the distribution shape in the upper tails. A knowledge of the dependence of the shape of the
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probability distribution on location in the plume is important, since the accurate asses,ent of the risks and

hazards caused by the accidental or deliberate release of certain highly toxic or flammable gases requires

the accurate prediction of the PDF of concentration, especially in the upper tails. A pushback analysis of

the conditional concentration data shows that the data can be well approximated by a single (truncated)

Gaussian distribution in the lower and near upper tails. lowever, this single Gaussian cannot accurately

represent the important information contained in the extreme upper tails.

Several probability distributions have been considered as models for the concentration fluctuation data:

these include three commonly used models, namely, the log-normal, the exponential, and the clipped-normal

distributions and a new model, namely, the g and h distribution. The log-normal distribution is not consistent

with the concentration data and results in a considerable overestimation of the frequency of occurrence of

high concentrations. The exponential distribution also overestimates the frequency of occurence at the upper

end of the distribution, although this overestimate is certainly not as severe as that provided by the log-

normal distribution. The clipped-normal distribution provides a reasonably accurate representation of the

concentration data in the lower and near upper ends of the distribution, but overestimates the frequency

of high concentration in the extreme upper end. However, this overestimation is certainly tolerable and, in

this respect, the clipped-normal constitutes a useful and moderately conservative model for concentration

fluctuations. The g and h distribution, based on the nonlinear transformation of a Gaussian process, is

clearly superior to the more common log-normal, exponential, and clipped-normal distributions as a model

for concentration fluctuations. The g and h distribution is able to accurately represent the nature of the

variations in concentration in the both the lower and upper tails. Indeed, the g and h distribution provides

a convenient and effective model for studying the statistical characteristics of concentration fluctuations and

for accurately characterizing the random process under consideration. Furthermore, the shape of the g and i

distribution is consistent with the shape of the PDF predicted using the strand model developed by Chatwin

and Sullivan [14].

The g and h distribution provides an accurate representation for the conditional concentration statistics.

However, it is not possible to specify the g and h distribution using only the information embodied in the

first- and second-order moments of the concentration fluctuations. In view of this, it is not sufficient to model

only the mean concentration, the relative fluctuation inten.ity, and the intermittency in order to specify the

total probability distribution of concentration. A number of models (e.g. Wilson et. al. [15), Durbin [16),

and Sawford [17]) have been formulated for the prediction of concentration fluctuation statistics, but, these

models have been restricted to the prediction of the first- and second-order moments only. As noted before,

a realistic model of the random processes governing concentration variations require the prediction of higher-

order moments, or, better yet, the probability distribution itself. In this regard, it should be noted that

the Lagrangian model recently proposed by Kaplan and Dinar [18] attempts to fulfil the latter objective,

although these results only have been considered in the context of one-dimensional homogeneous turbulence.
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TABLE I

Some descriptive unconditional concentration statistics.

Statistic Sensor I (y/, = 3.575) Sensor 2 (y/ = 2.145) Sensor I (y/oy= 0.715)

(Abs. Deviation)/Mean 1.975 1.940 1.700

(Std. Deviation)/Mean 12.53 7.985 3.160

Mode/Mean 0.000 0.000 0.000

Median/Mean 0.000 0.000 0.000

Peak/Mean 324.5 194.1 27.42

Skewness 16.79 11.87 3.916

Kurtosis 320.1 180.3 16.61

Intermittency 0.988 0.972 0.838
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TABLE II

Some descriptive coridition-d concentration s!--tstics.

Statistic Sensor I (y/o = 3.575) Sensor 2 (y/( = 2.145) Sensor 4 (y/a 0.715)

(Abs. I)cviation)/Mcan 0.710 0.639 0.717

(Std. Dcviation)/Mean 0.939 0.892 0.881

Mode/Mean 0.115 0.085 0.058

Median/Mean 0.670 0.780 0.751

Peak/Mean 3,869 5.381 4.448

Skewness 1.351 1.979 1.061

Kurtosis 0.807 0.786 0.479
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TABLE Ill

Parameters for some model probability distributions for

conditional concentration data (Sensor 4).

Distribution Parameter values

Exponential c (C) = 17,3092

Log-normal 1. = 2.3387

o' 1.1482

Clipped-normal Pc -3.5654

2.3123

g and i 77 13.0000

s - 16 0286
g( 0.7326

g, -0.0215

ho= -0.2367

h) 0.0080
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TABL[ IV

Comparison of data quantiles (Sensor 4) with itted quiantilcs

for log-ntormal. clipped-nornal, and g and Ii (list ribut ions.

p !)ata quantile (c/C) Log-niormal (ipped-normal g and I

0.0625 0.0578 0.1029 1.0750 0.069)

0.1250 (.1155 0.1599 0.15.41 0.122.1

0.2500 0.2889 0.2761 0.3269 0.2822

0.5000 0.7510 0.5990 0.7575 0.7510

0.7500 1.5600 1.2990 1.4291 1.5140

0.8750 2. 1376 2.2440 2.0376 2.1639

0 9:375 2.6000 3 .1866 2.5974 2.69 10

0.96875 3.0620 5.0847 3. 1179) 3. li3

0.98' 375 3.4086 7.1036 3.6066 3 .1264

0.9921875 3.6974 !).6 156 4.06 .I 3.6689

0.9960938 3.9285 12.703 -1.5077 3 850;

0.9980469 3.9863 16.457 ,.9211 3.9s63

0.9990235 4.1019 20.986 5.3227 .1.0891

0.9995118 4.1885 26.400 5,697T6 I.1699

0.9997559 4.30,11 : 2.A32 6.0791 ..12379

0.999878 4.331:( 10.426 G 4069 1,.3009
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Ion Collectors

1 2 3 4

in - -Im mm

FIG U RI 1

Schematic of 'xpt riinvntal setup. Mean wind direc-tion was from the ion gnerator and directed along a r;i,
perpendicular to th,, line formed by the array of 4 ion collectors.
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FIGtJRE 3

An example of a segment of a conretit rat ion record illuistratinig in-plume fine-scale turbutlent finctiiatins.
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FIGURE 4

11- sample (qlant ile fminction for Ihe' unconditionlal normalized concentratioll ilne seri,,s from Sen.or .1.
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FIGURE 5

A quantile box plot for the conditional normalized time series from Sensor 4.
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FIGURE 6

T[le sample density-quantile function for the condIitional normalized time series from Sensor 1.
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FIGU RE 7

Thie inid-versus- z2 plot for the conditional normalized time series fron Sensor 4 illustrating the asymenictry
in the data.
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FIGURE 8

The pseudosigma-verstis-z 2 plot for the conditional normalized time series from Sensor 4 illustratinig tilt
amount of elongation (i.e., the tajiweight) present in the data.
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'I lie pushback c/C.' valnes verstis z for Ilie conditional normalized time series from Sensor 4 revealing I iI;I
the probability distribution for ronicentration is well approximated by three Gaussians with different sc~ills.
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FIGURE 10

Conditional sample probability distribution functions obtained at three different, lateral positions in the
plun .
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FIGURE 11

The Q-Q plot of the data qiiantiles of Sensors 1 and 2 versus the data quantiles of Sensor 4. The pilo
was constructed from the conditional normalized concentration data obtained from each of the sensors by
censoring the periods of zero concentration and scaling the resulting data sequence by the conditional muemt.
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FIGURE 12

[he Q-Q plot comparing the data quantiles of Sensor 4 with the associated quantiles of the fitted !og-normunl
distribution.
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FIGURE 13

The Q-Q plot comparing tihe dat a quantiles of Sensor 4 with the associated quantiles of the fitted exponential.
clipped-normal, and g and h distributions.
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FIGURE 14

A COMl).rison of the observed total probability distribution for Sensor 4 with the model total probabiity
(listriblltions obtained from the fitted clipped-normal and g and h distributions.
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FIGURE 15

A comipari'win of' t hoI observed tot al probaobility distribution for Sensor 2 with the inodel total prob.11I I y
'hi-orilbutionts obItaine~d fr-mi the filtu eilipped-normnal andl g and h distributions.
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FIGURE 16

A comparison of the observed total probability distribution for Sensor 1 with the model total probability
(list ributions obtained from the fitted clipped-normal and g and hi distributions.
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FIGURE 17

The fittLed clipped-norinal and g and h conditional probability density functions obtained for che cond~it ifmlhi
concentration data froin Sensor 4 (y/aTy = 0.715).
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FIGURE 18

'Ihv fitted clipped-normal and g and li conditional probability density functions obtai ned for the cojid Itional
conicentrationi data fromi Sensor I (y/O'y = .3.575).
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